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and wall temperature is given
fluence of compressibility and
layer flow is taken into accou
lation are communicated.

.., Statement of the Problem Cover Pac

| boundary layers are intended primarily a
The s

Ctreatment of"engineering problems and—es

Faspects of boundary layer theory.

~schematic methods of calculation, capabl

&

BOUNDARY. (LAYERS /WIFH (HEAT TRANSFER!
¥ , :
N. Scholz \

An approximate procedure for the calculation of
laminar and turbulent boundary layers with available pressure

The following considerations concerning the calculation of compressible

NASA TT F-14,578

Title
ATION OF LAMINAR
T COMPRESSIBLE

for engineering use. The in-
heat transfer on the boundary
nt. Some results of calcu-

e Source

uccess of] boundary layer theory in the
1
peciaily"fﬁLghe—deveiopment—of —

e of application by nonspecialized

~development.

-capable of describing the important cont

-in the theoretical respect, but provide
:ioél that he can use to obtain a rapid (

-to the numerous problems encountered in

-

:individuals, is: making them an ever inﬁreasing and valuable aid in industrial
The problems encountered in this work are mainly of a highly
:éomplex nature, so that a more or less idealized statement of the problem
-must be formulated for a theoretical treatment.

|

:}ange of application that calculation mjthods have been employed which are

:kertain physical details and whose treatment is as simple and universal as
-possible. These preliminary remarks are

| proposed below will admittedly fall short of providing complete satisfaction

It is precisely for this

ent of the process while disregarding

I

made because the method of calculation

the developmental engineer with a
albeit frequently quite rough) answer

practice.

s a contribution to the practical i

L

Even
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. occurs when the wall is heated or coodled.

20

25

30

35 —only that the rotation-symmetrical case, as is otherwise conventional, may be
included.

té. Symbols

ko :k,;y B co;fdlnates 1n4the d;zee&;on of the wall and perpendlcular to it

' —1 reference length, generall;-the rnnnlng length of the boundary laye
:5, 6% & ehe thlckneas of the flow. and temperature boundary layers

L5 =3 3& energy loss and heat gain thickness according to equations (7) and
_ (8)
0, O momentum loss thickness and jcompression of flow boundary layer

0 :ﬁ, U velocity in the boundary kgﬁgr and at the outer edge

o

e Nn

of the extFrnal flow to a zero value at

~ Y

L

Hence,

(former becomes more significant with inc

“of this temperature boundary layer on th

dependence of the material propertées gé
Tature.

—

—

_Boundary layer calculation methods which

—and_turbulent cases)_ only_the quadrature

_or by a change in wall temperature caueed_by<gneVwallxitself.

As is known, the flow of a medium along a thick boundary, in addition to

"the flow boundary layer in whichPeR& veloc1tyedecreases from the total value

the wall, in the general case jalso

e o

“involves a temperature boundary layer in which the static tempverature of the .
r_flow medium changes from the external flow value to the wall temperature.

the deviations in temperature within the boundary layer may be

caused either by a heating of the flow medium as a result of internal friction

The |
reasing Mach number, while the latter
In each case, the reactive effect

e flow boundary layer rests on the

the flow medium on the local temper-
e Sour

For constant material properties, we already have very satisfactory

required (in both the laminar |

of certgin”functions that must be

-
_determined from the given friction-free

—an analogous method that approximately ¢
:&ariable material properties as a result

—and leads back to the known quadratures

_material properties.

flow.

onsiders lalso the influence of the

An attempt is made to derive

of firictional heat and heat transfer

in the boundary case of constant

Hence, it shall be:limited to the plane case, mentioning

|

!
J
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:T, TG temperature of the flow medium in the boundary layer and at the
- outer edge Page Ong Title

tTW, Tr &all temperature, forced or in a heat-insulated walls

T isentropic ram températurgage Title

ib density of the flow medium

:PG viscosity outside the boundary layer

»Fp specific heat

:?W thermal conductivity of the|flow medium at the wall

—d dissipation of the boundary jlayer profile

g acceleration due to gravity

—Re_, Rex Reynolds numbers (= p U 1/u_, = p6U§7u6)

™ local Mach number of flow ouside the boundary layer

:br Prandtl number [fong;SgsPig%(%?Trce

:H boundary layer shape factor of displacement thickness (= §*/v)
-H boundary layer shape factor|of energy loss thickness (= §/¢)

:ﬁ& bouﬁféry layer shape factor|of heat %%%n)thickness (= 5}/5}

~Ces Cep coefficient of friction of a flat pldate at zero incidence, T
N random or at M = 0 and a heat-insulated wall

—Cg?”c%d local coefficient of friction of the flat plate at zero incidence,
~ random or at M = 0 and a heat-insulated wall

:E isentropic exponent

™, n exponent of the dissipation|statement (10) or the friction law (12)
: ekponent of the viscosity law (2)

:?’ b constants

—~C,

-

. Meaning of Subscripts

:Q for incident flow

:B for the reference temperature TB according to equation (3)

0 for the flat plate at zero incidence with M = 0 and a heat-insul-
: ated wall (exception for T, |see above)

! for values that vary with the integration variable x' -

. NASA
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Es. Reference Temperature of Boundary Layer With Non-Constant Material

| Properties Page OnT Title

In the follow1ng, we shall discuss that the flow boundary layer of )
"a gaseous flow medium whose PrandUPrhumgérTf ¢ Ienown to be on the order; of 1
_gnd is practically independent of temperature. For this case, the thlLkness of
“the temperature boundary layer has approximately the same value as that of the
:flow boundary layer. A certain change in the density and viscosity develops
~for the flow boundary layer in addition [to the velocity profile due to the

_changing temperatures inside the boundary layer (Figure 1). With the usual

"simplification p = const within a boundary layer profile, we obtain the follow-

:ing for the density according to the general gas law

e

i SN LIS =

-

—and for the viscosity with the known power law

-

R

. ‘ ! .. ‘

] ply )//4,,47@ /T ;u, | (2)

- ' | (4')

e ..

- - . We can think of the temperature
U ’ '

:t f 4 I L 4% I Sl boundary]layer as being composed of

. P J | J the superimposition of two funda-

Vo ¥ [ - 7

- f — f | | mental cases, first the case without

] ulyl Y oty 1 2yl

s ‘ p \L__ 1_ AR heat transfer (a wall not transparent
) b | .__/j

I A A AU to heat), in which the temperature

‘Flgure 1. Flow Boundary Layer of a increases with proximity to the walls

Gaseous Flow Medium (Schematic). Curves

_gf velocity u(y), density p(y) and
| viscosity u(y) for temperature profile | the value Tr at the wall, and secondly

_roughly corresponding to that in
| Figure 2.

due to internal friction and reaches

the case of a heat transfer at the

_ wall, in which the layer of the flow
-medium near the wall is influenced by tJe thermal conduction by means of the
induction of a certain wall temperature Fw (heating or cooling) " (Figure 2).

~The gradient dT/dy at the wall determines the direction of the heat transfer.

- It is now evident (and has already(Peen proposed by several researchers)

:1 , 2] that the influence of the dlfferent temperatures within the frlctlonal

o C —

Even Roman 0dd
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~4ayerrganvbe taken into account by the fact that the material properties
ge Oné Title

'E@f the floY medium can be assumegaconstqnt within the frictional layer, but
that they

-their values will differ from those in the external flow in the sense

:?orresp0nd to a certain averéée“?éﬁﬁe¥§{ﬁrg'%fghiﬁ the frictional lay%r. It
-shall be designated that this model boundary layer is'a quasicdnstant set of
:@aterial properties and the temperature 'at which the ﬁaterial properties -of th
-boundary layer flow are to be determined will be called the reference temp-

“erature T This reference temperature jmust be composed of the external

B’
~temperature TG and a component that depends on the temperature differential

”Tr - T6 as a result of frictional heat and the temperature differential Tr -

- Ty due to heat transfer, making up the parts of the temperature boundary

layer. An appropriate simple relationship is the following
B Cover Paée Source

l( . 7:3 = ‘7:') ":; a (Tr - T:)) - b (T; - TLV) A/‘ (3)

-

"with a and b still unknown dimensionless numbers.

_numbers will depend on the critical simillarity v%kqe§, namely

Strictly speaking, these

b

N

_In the case of the dependence of the reference temperature TB on the Prandtl

humber, experimental studies are available only for heat transfer [3], which

_show no significant dependence in the area of Prandtl numbers in the vicinity

(4)

a and b equal to functions of Pr’ M, Re, H.

of 1 (gaseous flow medium), so that T may be considered as practically

B

independent of the Prandtl number due ta the analogy between heat transfer and

~friction. Dependence on the Mach number was investigated for the laminar
—

_boundary layer at constant external velocity by E. Eckert [4] by comparison

with a stricter theory [4], where there was practically no dependence in the
_range 0 < M < 10. For the case of turbulent boundary layers with constant
E?xternal velocity the relationship' through comperison with the theory of

A, Walz [6] was investigated. The resullt is shown in Figure 3 and likewise

——— B e Sttt = e wm—
. v S wearm— \

. ———— - ——— —_ A

7

NASA

L

e

|
i

Even Roman . 0dd



i0

20

25

35

40

b5

50

S

boundary layer profile in the cab896£ 085

-strictly (in a turbulent boundary layer,

ver Pace

of the Reynoldé.‘number, a and b d&n arsé

. the Reynolds number. For the dependenc
"H and hence the curve of external flow U
:eomparative values especially for the tu
:Pe said at the present time. Since we a
lwith results of a boundary layer with co
"disregard the influence of the change in
:io the value of the boundary layer of th
“law of energy dissipation of a boundary
(et
“temperature for an approximate method all
:extent. Deviations can be expected prim

pressure (vicinity of the point of shedd

_shows practically no dependence on the Mach number!.

C Paci
[7]1, p. 537), so that the dfggega%de

Since the form of the
eTigﬁfnar boundary layer flow ;is

with good approximation) independent
Titl]
be
e of the boundary layer shape factor

(x), due to the lack of suitable

eXpected to be independent of

rbulent boundary layer, little can

btain a and b from the .comparison

nstant external velocity, we can
the shape parameter H with respect

e plate. A similar procedure in the

layer profile led to-highly useful results
ogogﬂgeinflu;nce of H on the referencef

so appears justified to a certain
arily in the case of a sharp rise in

ing).

(&)

S

The frictional temperature Tr

1. T, = Th<1 +

i
e

is known to be| a function of the heating

| factor r and the Mach number of the external flow:

30

and in the case of gases with Prandtl number of approximately

rx_}l-M:'),
2

(5)

1  the function

 1The equations used to determine a and
the flat plate are as follows:

14»1

L . cf 1—naw
~ (%) s

The subscrlpts T and T

[6__

Even

Roman

b} from the coefficient of friction of

e =, b -

represent the rgtlo of the coefficients of friction

)

and T = T and T = const # T . The correspondlng formulae w1th the local
coeff1c1ents of frlctlon are: l

‘ RN . 1
" r”_’7‘7) i—no ) l—n(-x-}' of 1:77{}12;
i~ e —1 {7 bt
B Ln:jmﬁh_uu_w b=<%fL_w;u&&%W-”w

( XML, ‘ I Tw

- 2 Te, -~ Cn

14+n '_ 1»*0_- n.
1—nw

! Cf "1——-"!' (L‘f)‘
<¢)R ' /W
T, I
"?;' -

- e
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~r(Pr) can be given in good approximation by fractional powers of the Prandtl
Page On¢ Title
number (cf. [4]). Finally, we obtain for the reference temperature

B "
-1
i TB=TA[1+V'%‘2' Mz(a‘—-b)—bJ-{-bTW (6)
:@ith the constants according to Table 1.
-t 1] ' . : s — ’_l — ]
N | a’b # 5 $ a=0" #
. 0 g — g -

- i 7 K
e 1 , "
o A 92 o & 2 __l__ S
— ' b=02 _?
- g, l I
B ! 2 y 5 8 10
™ Page Sc...__ , . _ﬁ@_ o
I = Figure 3. Values a and b of the
- S B B E Reference Temperature According to [

ANl B N Equation (3) as a Function of Mach |
— e a(T. =Ty ) — W I
B all. = Ty/ ‘e Number jof, Incident Flow of the
— S A Turbulent—Plate—Boundary—Layer-—~~-~—
B S © ' © obtained from cf(M°° _Tr i W)’
Figure 2. Temperature Boundary Layer .
:@f a Flow With Heat Transfer (Schematic)|. * obtained from Cf(Moo’ Tr)’ both |
Dashed curve without heat transfer, according to [6].
[ finely shaded area: temperature |
r“component due to heat transfer to the .
wall "Heat flow from the heat medium -
> wall: (dT/dy)W > 0, wall - flow
-medium: (dt/dy)w < 0.
}—-
B TABLE 1. VALUES OF THE CONSTANTS' FOR THE REFERENCE TEMPERATURE IN

::EQUATIONS (3) to (6), LAMINAR ACCORDIN% TO [4], TURBULENT ACCORDING TO FIGURE 3

B | Frictional layer a b r(Pr)
—_ Laminar 0.72 0.50 Prl/2
: Turbulent ' 0.48 | 0.20 Pr1/3
- NASA

Even Roman 0dd
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44, Integration of the Law of Conservation of Energy of the Boundary Layéer

—- Page OnL Title
For the proposed method of approximation, we shall use the energﬂ law of

.|-the boundary layer theory to calculate the energy loss thickness whlch'serves

Cover Pace Title
as a measuremof the loss suffered upstream in the boundary layer with respect
!

~to kinetic energy of the flow as a resullt of friction and is defrned by the

10 [equation ‘

]

\ o5 U 3=0J"0 W) () [U* = ()] dy

;j addition, we shall use a characterlsJ1c value of the corresponding tempera:

1ncrease in flow of perceptible heat due to upstream friction. and heat galn or

20 (loss by the wall and is deflnedwaethenequatlone

U

-ture boundary layer as the heat-gain thickness, which is a measure of the

’)T e
04) u T,) (ST =3 ‘ 0 (y) T (}/) [T(y) _ T,)] dy
o

e e

e

l‘(cf. [7]1, page 328, where the enthalpies| are used| instead of the temperature).

5
Efina&ly;—%he—dissipa%ion d—disappears—in—%he—eneré%igawT—represen@ing~the—~

-amount of energy converted locally in a poundary llayer profile from the

|pr1nc1pa1 flow into frictional heat and jturbulence (cf. [7], page 537]. *The

3¢ -energy law is written with these three values (cf. [7], page 328 ff., but

where the limitation of a wall 1mpermeab1e to heat is made, also [8])

PN
w s

0,) LI‘ dx

a———

u dt 0s U"

For integration of this equation welrequire a relationship between the

and E&. We will obtain the former

40 from a generalizaiton of the corresponding loss for the dissipation in a

[energy loss thickness § and the value d

t . . . i . Co
-boundary layer flow with constant material properties aécording to E.

iTruckenbrodt 18], which derived from meaSurements by J. Rotta [9]. Under the

L5 |
ématerlal properties, which can be obtained at the reference temperature TB,

assumptlon used in the previous segment of a boundary layer with quasiconstant

thls law will read as follows

t . NASA

Rl

(8)

i

r \ B 1 d(os Uy @+15T1du_2 d /V | (9) .

f
|
l
i
i
’
!
|
;
I
~

1

!

|

N

Lo L] —
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o d — /LB;I r;
L SR Y LA 1
T osU’ ﬁ(gﬂﬁ%) // (10)

-~ - - - h— -

.In addition; the‘repxesentatidn of a constant reference temperature TB

within

2 boundary| layer profile will rgggﬁg&gaqﬁeTféfﬁ%ionship l
o : o U* Og = r \
P T T = e

_since in the definition equation (7) for § the density is treated as constant.
:?he same is true for the momentum loss ﬁhickness ¢ (cf. [7], page 328), from
-which a boundary layer thickness ratio H-independent of the temperature
distribution is obtained?. If we now use (1) and (2) with p(y) = pp to intro-
..duce the material values of the external flow into (10), we will obtain for the

"dimensionless dissipation

| d — N n T 1—nw )
i Tl ' (11)

—

| This law is given as a working hypothesils, which allows integration of the
“energy law: Here T, is selected so that the law iz fulfilled as well as
- . "

B

possible on the average, proceeding from the conjlderatlon in the previous

section. The exponent n in (11) can easily be made to agree with the exponent !

.n of the friction law of the flat plate [with zero incidence with constant

material values

s

. . T VA.WC“ B a______ [——
’ . PR (12)

_while with U = const and the dissipation law (10) the energy equation (9) is

“integrated. A comparison with (12) theq gives us (cf. also [8])
.- —— e . . ‘J\‘ °

‘ LA

3 17

(13)

Table 2. gives a compilation of the |exponent, while for turbulent boundary

J—

“layers the Prandtl power law of plate friction (cf. [7], page 500) is given

:?On the other hand, this is not true for the boundary layer thickness ratio
. H:= &*/yp, for which the author givesjanpestimate in [10].

e

Even . Roman . 0dd
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TABLE 2. EXPONENTS OF THE RESISTANCE
LAW (12) AND, CORRESPOND{NG EXPONENTS

t

C OF THE DISSI%ATION LAW (12)
=] » ]
e ExRonent rr:\\l.;r D-\H]—:l: T;#-'!Q n
— Laminar |11 1/2
B Turbulent 1/5 1/4 |
i0 ' N

~-A relationship between the energy loss density § and the heat=gain thickness

:?& can be established by establishing an energy balance between two boundary

15 layer profiles separated in the flow direction. The loss of kinetic energy

:@f the main flow is therefore equated to the increase in heat transferred to

the wall by thermal energy created by dilssipation and by heat transfers.

— The following boundary lay% values are obtained:

20 oved Xie ;
—— T = R e ]
— HT=-(ET~=’~{';1M2+ A '
. \ | 0 . 1 (14)l
‘ Tw—T, <Tw>“’ 1 x'
T v . + : I (x' |
25 [ l T,) T,\ RL’,)PI’J‘,\“ (X)d<x) '
— el el e _4
- This strictly valid relationship er HT invohves a link between the flow !

and temperature boundary layers, in case there is| a heat transfer at the wall

o

|
30 i
3The thermal balance for two points dx’ Japart in the boundary layer will be :
I o ey mmmeen o do S !
35 |_ ° s |
- =2g¢,-4 fT (T—T f2 a0 (4T ’
¢p i | caw ) dy +2Aw(dy)w, l
= T —— - .
— For the heat flux at the wall, the local Nusselt number is introduced;
Lo [ o

Al |
~ The integrals are replaced by § and §.. laccording to (7) and (8). Then an
i integration from 0 to X with x' as thefintegration variable following intro-

b5 |"duction of the speed of sound of the outer flow as well as the Prandtl and
“Reynolds numbers gives us the equation ({14).

L N
50 _ NASA

Even @ ' Roman 0dd



(Nu # 0). The integral of the second term represents the local Nusselt number
obtained upstream from point X, which can be estimated in simple cases. Since
the value of ﬁ& fortunately is not very much involved in the integration of the
energy law, we can content ourselves with estimates of this term. A simple and

useful approximation formula“ is

. ¥ o  Tu—=T (15)
f ,'r T : J\.I- e

&)
=

where we use average values over the running length of the houndary layer for

M and TW’ in order to obtain a value of HT

the dissipation law (11) and the introduction of F& as an approximately constant

average value along the boundary layer, the integration of the energy law (9)

which is independent of x. With

may be undertaken. In the following, we shall indicate only a few intermediate
steps in this calculation process. The integration takes place within the limits

0 < x" < x. As a substitution we can use

w4 (x’} = []* HT”T n) ({_}‘5 us f'_f(-)_)] 1781 (16)

with the derivation

dn‘f i 9 0T w T -
J v’ == (I, -+ ”) L= Hy (1) (ed U*H ‘)}" % (17)
[ & {‘ffﬁr\ WHS) = paU H3dU
o K -+ 2 {f"r‘ i
dx u de'

“This is obtained from the related assumption that the temperature profile of
the boundary layer is similar to the profile of the velocity quadrate of the

of the flow boundary layer, i.e.:

fw iy WEph

T Ty 1e

Inasmuch as GT ~ §, we must assume that Pr = 1. By introducing the relation-

ship into the definition equations (7) and (8), we will obtain

P iR R e
e =3, - _

The first term for r - 1 (Pr - 1) agrees with the exact result (14). We shall
correct the result by replacing the fact or of r by 1 and thus obtain (15), which
offers useful values for Prandtl numbers in the vicinity of 1, and for temp-
erature differentials that are not too great.

11
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- Using (16), we will obtain the following from the energy law (9)
- Page On% Title

d § TR — o UPHI AU
~ S (o UPHSY + 2,9 oau
- . dx 0s ) T u dx’

._1 _____ ) ) 5 )<Td >] — 1w 1o n
: . = : 3
- L =) (e

:@here the left side shows the brackets in (17). Substitution of (18) info (17)

~allows separation of the variables, since § drops out. Then we will have

(18)

uzFiT-(Hn). (0o U3 3)”‘" =
r_- x \\ .
N .,,-m_ | =J2(i‘-{—n)ﬂ1~_1"0',’ﬂd’nu'3+2n+2ﬁ7(1+n) % (19)
- : 0 \\
- "\ A < T >l—-n 1%} )’
- ' S e
- ' T T
— As E. Truckenbrodt [8] has shown,
" ) 2‘1 -+ ijn — '
I \ .. ( H)ﬂH_NE , (L}n) (20)

|

t}s a function that is largely indépendent of the |shape factor H and hence the

Tof (19) for the desired value of §, being made dimensionless with the values of

_the incident flow (subscript =) and the [boundary layer length 1, finally gives

us the equatione=

~ S
— -0 . ) { _ 401
. ‘/T’w>l--nm< u’ >ag+zn+zHr(1+n)'i <x'> 1+n .
o ) + 4
L \ 5—“ﬁhqn‘;\T,_ M/ | L (21}
B 12 PR ( u )34 27y
- C e MU
T e I T
; The first factor is obtained from a comparison with the flat plate bound-.

—ary layer with zero incidence at M = 0. Ceo is the incompressible coefficient

"of friction of the plate with zero incidence for the Reynolds number HO of the

-corresponding formed parameter formed with the values of the incident flow,
_which in the laminar case has a value df 1.56 and in the turbulent case with
. Re = 107 is approximately 1.80 (cf. [10f). For Tp = T_, ps = P, and ﬁ& =0,
:(21) becomes an equation for the bounyéré layer without frictional heat and

(12 - —_

Even Roman 0dd

_running length x, so that it can be extracted before the integral. The solution

!
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| heat transfer (cf. [8] and [10]). It is

_given velocity distribution along the wa

—

To defermine the momentum loss thic
| we shall not discuss it here. In refere

:Bave discussed elsewhere [10].

-

~flow and requires for its evaluat?Sit 5ﬁﬁy15tdﬁhdratuie over a functio

valid both for laminar and turbulent

11. !

— Cover Pace Title

kness as well as the sensitiviFy to

~solution, a determination of the local shape factor H(x) is necessary, but

nce to the quadrature method of

n of the

~Truckenbrodt [8], this comparatively simple method can be carried out, as we

-number. In accordance to the determinat
:iemperature (3), the curves in the lamin
~Young -and Janssen [5], in the turbulent
:Walz [6]. The curve with the Reynolds n
Lthe change in the exponent n, which it i
Cz'of the resistance law of the flat plat
~the turbulent Prandtl-Schlichting resist

:is obtained from the slope of the resist

=

—

o -

| in Figure 4 for a wall which is impermeable to heat as a function of Mach

ar case agree with the theory of
s related by (13) to the exponent

ance curve and is equal to

]

5. Sample Applications

B For the case of the flat plate with zero incidence, we obtain from (21)
"with -

~ Cove: ¢ _ Had burce

I~ 2 l

:;he ratio of the coefficient of friction of the compressible boundary layer to
-the incompressible boundary layer

- » _ (hn) L
] = J ! (22)
—~ o Dt Y o

- For the case of air as a flow medium, we have evaluated this equation

-

ion of the constants for the reference

case with Re = 107 with the theory of

umber in the turbulent case comes from

e with zero incidence. On the basis of

ance law ([7], page 502), the latter

- \ - Iog Rcl‘ : (23)
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:Figure 4.  Ratio of the Coefficient of

Friction of Incompressible Boundary
Layer on a Flat Plate with Zero Inci-

| _dence Without Heat Transfer as aCEfficti
_of the Mach Number of the Incident Flow
|_Flow medium: air with Pr = 0.72, w
| and n = 1 (laminar) and n according to
|_equations (13) and (23) (turbulent).

| ---, Boundary case Re_ + @ with n > 0.

20

25

¢ge

Tnctioh

0.76

Figure 5 shows the ratio

Title of coefficients of friction

|
for the flat plate wiéh Zero

Title incidence with heat t%ansfer.

The absc¢issa is a ratio of the

wall temperature T, which is

W
constant along the plate to

the isentropic ram temperature

of the incident flow. The

To
boundary between the cooling\

and heating of the wall is

The friction

)
!

given by T r

Sourceils 1ncreased by coollng the

wall and reduced by heating it.
In Figure 6, for the case

\

of air, we have the boundary
ll

30

LT

| based t

F}

in each case on the local energy loss tk
35i_1ayer on the plate,.
—~

he energy loss thickness of the &

The temperature is

—temperature (no heat transfer, dashed 11

|_external temperature of 216.5°K,

—o0f 11 km. (heat transfer from the air te

calculated for an incident,flow (Mach number M

~characteristic dlfferences in the boundary layer on the flat plate,

corresponding to an altitude in the atmosphere

——nge¥ in--a—tenticul-ar profile

|

with 5% relative thickness

i 3). In order to show the
we have
oundary layer along the profile contour
1ickness of the incompressible boundary'
equal on the one hand to the frictional
nes) and secondly equal to 400°K at an

the wall, dashed lines); the horizontal

Lo

--at the flat plate.

e

hsl«This tendency is evoked primarily by the density of the external flow at the

r~crease5 linearly with x).
0

5T o i o e e e o T - N

" lines give the decrease in frictional losses of the compressible boundary layer
The energy loss thickness is initially less than that at

 the plate and rises above the plate value toward the rear edge of the profile.

Tlentincular profile which decreases toward the rear edge (the Mach number in-
—

If the wall gooling is limited to the rear half of
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—the profile, the curve following the daLhed path will deviate from the solid

| _curve for the front half, If ondygthgvfrontlhalf is cooled, the solid curve

—that is a lcontinuation of the dashed curve will result in the rear ha%f The

__cooling in the front half increasgs qhgjgnergy loss thickness more intensely

i

—than the cooling of the rear half. This is interesting, since the heat transfer

_in the front part of the profile is better than in the rear.

I
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S ‘ g T, ' ﬁigure 6. Curve of the Energy |~
— - - . Loss Density Relative to a 5%
. . A Thick Lenticular Profile with
,Flgure 5. Ratio of Fhe Coefficiénts of M = 3 Along the Depth of the |
.. Friction of Compressible to Incompressible © |
|_Boundary Layers on a Flat Plate with Zero Profile, ——, T, = T_,, -==, |
flncidence with Heat Transfer as a T. = 400°K at T = 216.5°K. !
_Function of Wall Temperature. Flow W @
_medium: air with Pr = 0.72 and w = 0.76) .
- The refere 1 §.(x) is th

~turbulent, Re_ = 107 with n = 0.19. nee vatue, 0( ) i °
t. _ . local energy loss density of
L ”"Tw B Tr’ no heat transfer; the boundary layer on the flat
}‘TW = T, cooling of the wall to external plate with incompressible flow.

_temperature. Flow medium: air with Pr = 0.72,
. w = 0.76 and Re_ = 107, !
- turbulent, '
!: The frictional resistance of the lenticular profile is obtained from the

energy loss thickness 6 at the rear edge of the profile. If we relate the

coefficient of frlctlon again to that of the flat plate without heat transfer

NASA
—at M = 0, we will have T
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~The values

:ﬁhe plate with zero incidence with equal

—pressure drop along the wall contour of

—~wall, with M_ =

_impervious to heat for a given Mach number,

3 (interpolated) and Re
Cover Paé

wall temperature, caused by the

the lenticular profile.

= 107, calculate the value

e Source

(cf)ProfiIe/ch = 0.630

the tota}

|

of this ratio betweehothe Coefficiénts of friction have been sum-
:harized in! Table 3 for the different assumptions of wall temperature.
—second column gives the percentile deviation from the value of the flat-plate
Throughout there is a slight de-

. : | : :
-crease in the frictional resistance of the lenticular profile with respect to

:and S. Kirkby [11], for a 5% thick lenticular profile with heat-impervious

(24)

The

A. D. Young

:in contrast to our value of 0.639. For (fgfistance, we add to this

the pressure resistance. T

— TABLE 3. VALUES OF RATIO OF COEFFICIENTS OF

- FRICTION FOR A FLAT PLATE AND 5% LENTICULAR

. PROFILE IN AN INCIDENT }|FLOW OF M_ = 3) FLOW

B MEDIUM: AIR WITH Pr = 0/72, w = 0.76% TURBU-

B LENT BOUNDARY LAYER|WITH R_ = 107).

- Contour [Wall temperature] % e T T

- o<x<ITy=T, 0,658 -

- Flat plate | 0<x<IiTy =400° | 0710 + 8,00

: | o<x<ITy=T, 0,639 —2,9%

o Lentjf_?ulll ar o<y <z£‘;‘u* = 400¢ 0,675 + 21,'6" 0

~ prorile 0 <x < AT T, 1

—~ /1 = 5% 112 ég E L L2t

- 0 < v if2: TS | e

. 12< %< [ Tip = 000 |* 0665 L

- ) | T o .

- Note: commas indicate decimal points. A
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